Structure and Phase Transition in (C₂H₅NH₃)₃Sb₂Cl₉·(C₂H₅NH₃)SbCl₄;

X-ray, DSC and Dielectric Studies

Maciej Bujak and Jacek Zaleski

Institute of Chemistry, University of Opole, Oleska 48, 45 052 Opole, Poland

Reprint requests to Prof. J. Z.; Fax: ++48 77 4410741; E-mail: zaleski@uni.opole.pl

Z. Naturforsch. **55 a,** 526–532 (2000); received January 10, 2000

The structure of $(C_2H_5NH_3)_3Sb_2Cl_9 \cdot (C_2H_5NH_3)SbCl_4$ at 295 K has been determined. The crystals are orthorhombic, space group $Pna2_1$ (a=16.925(3), b=24.703(5), c=7.956(2)Å, V=3326.4(12) Å 3 , Z=4, $d_c=2.018$, $d_m=2.01(1)$ Mg m $^{-3}$). They consist of an anionic sublattice composed of two different polymeric zig-zag chains. One is built of $Sb_2Cl_9^{3-}$ units (corner sharing octahedra) and the other one is made of corner sharing $SbCl_2^{1-2}$ square pyramids. In the cavites between the polyanionic chains four non-equivalent ethylammonium cations are located. Three of them are disordered. The cations are connected to the anions by weak N-H...Cl hydrogen bonds. A first order phase transition of the order-disorder type was found at 274 K. It was studied by DSC, dielectric and X-ray diffraction methods. The mechanism of the phase transition is attributed to the ordering of at least one of the ethylammonium cations.

Key words: Ethylamine; Chloroantimonate(III); Structure; Phase Transition.